lunes, 24 de noviembre de 2014

practica de la pagina; 51

material:

   recipiente con agua.
   triangulo de cartulina.
   jabón en liquido.

procedimientos:

en un recipiente largo llenar 3/4 partes de agua.
colocar el triangulo. 
con ayuda de un gotero aplicar una gota de jabón liquido.

observaciones; 

cuando no tiene jabón  es mas ligero y choca por los bordes del recipiente haciendo diagonales pero cuando le pones el  jabón el transcurso se hace mas lento pero continua haciendo lo mismo lo único que cambia es el tiempo.
 

practica pagina: 49

materia: 

  •     hilo.
  •     hielo.
  •     vaso con agua.
  •      sal.

procedimiento : 

   coloca en un vaso con agua un cubo de hielo, observa como flota.
 coloca sobre el hielo una hebra de hilo.
 añade sobre el hielo una pizca de sal y el hilo.
deja unos 2 o 3 segundos y jala el hilo.


observaciones;

  • Al principio sin la sal  el hilo no pego con el hielo pero después de al aplicarle la sal se aprecia lo del vídeo que se pega el hilo al hielo capas de aguantar el peso este.

  •  Esto es por que la sal descongela al hielo o derrite permitiendo posteriormente que el hilo se funda con hielo.  


practica de la pagina ; 53


materia :

  • hoja de papel
  • reciente con agua 
  • compás
  • regla
  • tijeras.


procedimiento:
  dibuja y recorta en una hoja de papel un circulo con un diámetro de 15 cm.
tomando la base del circulo, dibuja y recorta una estrella de 6 picos.
  dobla bien todas la esquinas hacia dentro, con lo cual formaras un hexágono.
 



coloca la flor en un recipiente con agua, observa como se va abriendo.
 


conclusión :

 podemos observar que la flor se va abriendo mas rápido con el agua y tarda alrededor de 00:01:15 segundos para abrirse en el trascurso que recorre al recipiente, ademas de que el agua ayuda acelerar el procedimiento ya que por impuso propio la flor se iba  abrir
   

sábado, 15 de noviembre de 2014

superficie de contacto afectado por la velocidad de la reacción



 
temperatura afectada la velocidad de la reacción


pagina 60 quimica
1._¿ por que se oxida mas rápido el tubo de escapa de un auto? R= por que esta expuesto al medio ambiente y con ello al clima ya se lluvioso que facilita a que suceda esto ademas de que esta en contacto con el oxigeno.







2._¿por que el carbón arde mas rápido  si se sopla sobre el ? por que el oxigeno ayuda ala combustión del carbón al ejercer una fuerza sobre el.

                                         quimica pagina ; 69
pag; 62  quimica

        1._ ¿por que un alimento con conservadores dura mucho mas tiempo sin descomponerse  que uno que carese de ellos ?  R = por que el conservador minimiza el deteriodo distintas bacterias que pueden entrar ala comida

2._¿por que los chocolates  en polvo se disuelve mejor con la leche esta caliente ?
R= por que esta a  una teperatura
1._¿ Para que se le agregan aditivos a la gasolina de vehículos?
mejora la combustión de combustible .evitando los humos hidrocarburos no quemados y los restos de carbonilla. ademas de mejorar el consumo y potencia.









2._¿ estos aditivos tienen la función de catalizar o inhibir la reacción?

catalizan por que aceleran la reacciona química


3._¿ que es la autocatalisis?
capacidad de ciertas moléculas para aumentar el ritmo de su propia producción en una secuencia de reacciones.


pag;68                                                                          quimica

¿la reacción química de algunos vegetales son mas rápidas o a mas lentas en algunas estaciones del año?
 R= Si por ejemplo en invierno carecen del sol y no del todo se lle baria completa la fotosíntesis
                                                                                                                           PAGINA; 67     quimica
1._¿ en que cosiste la digestión? R= La digestión es el proceso de transformación de los alimentos, previamente ingeridos, en sustancias mas pequeñas para ser adsorbidos.
2._¿ por que se aconseja masticar bien los alimentos? R= cuando se tiene buena masticascion los enzimas salivales con el alimento, se logra la predigetion  e inicia el proceso químico  que ocurre en el interior del organismo en donde se separan sustancias benéficas de toxinas.





3._ ¿la digestión es un proceso lento o rápido ?R= todo dependería del sistema humano que lo realiza ya que no en todos los cuerpo son iguales


                                                           pagina; 66   QUIMICA














1.-¿por que un alimento con  conservadores dura mucho mas tiempo sin descomponerse que uno que carese de ellos ?  R= por que detiene los procesos de fermentación y otras alteraciones biológicas  de alimentos o bebidas, provocado por hongos o bacterias.



2._ ¿Porque los chocolates en polvo se disuelven mejor cuando la leche esta caliente ?
R= por que estado en el que esta el agua le ayuda adesacer mas rápido sus moléculas teniendo en cuenta que la materia ya no esta completa que en este caso seria el chocolate en polvo.



3._¿Has observado que existen sustancias que se le agregan a la gasolina para que los autos tengan mayor potencia?

   R= si


4._ ¿ como se les llama a esta sustancia y como funciona ?
 R= petroleo e hidrocarburos.
el petroleo después de que es estriado el combustible se separa en fracciones de hidrocarburos  que tienen propiedades desaparecidas, a lo que se le conoce como destilación



5._¿como sabemos cuando una sustancia permanece en equilibrio químico ?

R= cuando la velocidad reacción y el equilibrio son los indicados o se estabilizan


6._¿ Señala un caso de una reacción reversible? R= Este tipo de reacciones se representan con una doble flecha, donde la flecha indica el sentido de la reacción

a\mbox{A} + b\mbox{B} \rightleftharpoons c\mbox{C} + d\mbox{D} \,\!







                                                                                                    PAGINA ;62 uuimica

                   SÓLIDOS CRISTALINOS 


Las partículas siguen un patrón que se repiten en el espacio tridimensional..
ejemplo ;  cuarzo, diamante, azúcar,  sulfato de cobre.


                        sólidos amorfos 


  • sin reticulo.
  •  sin forma geométrica definida .
  • partículas al azar .




    características de los sólidos amorfos y cristalinos 


              Amorfos  

                                                                                                 Cristalinos

 estos sólidos carecen de forma definida. 
son mezclas de sólidos que no se pueden ampliar bien. . 
tienen una temperatura característica a la cual sus propiedades experimentan cambios importantes.
no tiene un punto de fucion  definido, sino que dicha transformación acontece en un intervalo de temperatura. 
manifiestan las propiedades de los cristales.
su estructura.


                                                                                              
                                               En un sólido cristalino la disposición de sus átomos guarda una simetria..
 posee un ordenamiento estricto y de gran alcance, es decir, sus átomos, moléculas o iones ocupan posiciones específicas. 
sólido cristalino las fuerzas netas de atracción intermolecular son máximas.

jueves, 9 de octubre de 2014


reaciones quimicas son todo aquello que tiene una cosecuencia respecto ala quimica o experimentacion claro esta que no todas tienen las mismas propiedades ni efectos sobre algua mezclas es por eso que cada una tiene su clasificasion o nombres debido a que los factores varian y dependen de la naturaleza del reactivo, tamaño de particula, temperatura,consentracioon y  catalizadores.

tipos de reaciones:

redox :













combustion :













presipitacion ;












aeido base;




miércoles, 1 de octubre de 2014

Las once sustancias químicas a eliminar

 

 Usos: Son ampliamente utilizados en la industria textil para procesos de lavado y teñido.

Entre los compuestos alquifenoles que se utilizan, se incluyen los nonilfenoles (NPs) y octilfenoles y sus etoxilados, especialmente los nonilfenoles etoxilados.

Efectos: Son tóxicos para la vida acuática, persistentes en el mediambiente y biocumulativos en los tejidos corporales.

Son similares a las hormonas naturales como el estrógeno con lo que pueden dar lugar a un disrupciones hormonales de carácter sexual en algunos organismos (por ejemplo, la feminización de peces).

Ftalatos

 

Usos: Los ftalatos son el grupo de sustancias químicas más utilizado para ablandar el PVC (el plástico de cloruro de polivinilo).

En la industria textil se utilizan en el cuero artificial, en el caucho y en el PVC. También en algunos tintes.

Efectos: Existe preocupación acerca de la toxicidad de los ftalatos tales como DEHP (bis (2-etilhexil) ftalato). Se considera tóxico para la reproducción en mamíferos, ya que puede interferir con el desarrollo de los testículos en los primeros años de desarrollo.

Los ftalatos DEHP y DBP (dibutil ftalato) son clasificados como "tóxicos para la reproducción” en Europa y por ello, está restringido su uso. Según la normativa europea REACH, estas sustancias se prohibirán para 2015.

Retardantes de llama bromados y clorados.


Usos: Los difeniléteres polibromados (PBDE) son uno de los grupos más comunes de los BFRs. Se han utilizado en multitud de materiales (incluso textiles) para reducir la inflamabilidad del producto.

Efectos:  Muchos retardantes de llama bromados (BFR) son sustancias químicas persistentes y bioacumulativas que ahora están presentes en el medioambiente.  Algunos PBDEs son capaces de interferir en los sistemas hormonales implicados en el crecimiento y en el desarrollo sexual.

Según la legislación comunitaria el uso de algunos tipos de PBDE está fuertemente restringido, e incluso un PBDE ha sido catalogado como una "sustancia peligrosa prioritaria" bajo la directiva marco europea del agua. La normativa exige que se tomen medidas para eliminar la contaminación en aguas superficiales.


Colorantes azoicos

 

Usos: Son uno de los principales tipos de tintes utilizados por la industria textil.

Efectos: Algunos tintes azoicos al degradarse durante el uso liberan sustancias químicas conocidas como aminas aromáticas, algunas de las cuales pueden causar cáncer al entrar en contacto con la piel.

La Unión Europea ha prohibido el uso de estos colorantes azoicos.

Compuestos organoestánnico


Usos: Los compuestos orgánicos de estaño se utilizan en biocidas y como agentes fungicidas en una amplia gama de productos de consumo. En la industria textil se han utilizado en productos como calcetines, zapatos y ropa deportiva para prevenir el mal olor causado por el sudor.

Uno de los compuestos orgánicos de estaño más conocidos es el tributilestaño (TBT), cuyo principal uso es como elemento en las pinturas antiincrustantes para buques, uso que se ha prohibido.

Efectos: Han aparecido evidencias de que persiste en el medio ambiente, de que se acumula en el cuerpo y que puede afectar a los sistemas inmunológico y reproductivo.

Este grupo de productos químicos se cataloga como "sustancia peligrosa prioritaria" en la normativa de la UE, para las que se requieren medidas de cara a eliminar la contaminación de aguas superficiales. Desde julio de 2010 a enero 2012, los productos que contengan más del 0,1% de ciertos tipos de compuestos orgánicos de estaño quedarán prohibidos en la UE.


Perfluorados


Usos: Son sustancias químicas sintéticas que la industria emplea por sus propiedades antiadherentes e hidrófugas. En la industria textil se utilizan para fabricar productos textiles, de cuero y antimanchas,

Efectos: se ha demostrado que muchos PFCs persisten en el medio ambiente y pueden acumularse en el tejido corporal a través de la cadena trófica.

Una vez en el cuerpo, hay evidencias de que afectan al hígado. También actúan como disruptores hormonales alternando los niveles de crecimiento y reproducción hormones.

El más conocido de los PFCs es sulfonato de perfluorooctano (PFOS), un compuesto altamente resistente a la degradación, con periodos largos de permanencia en el medioambiente.

Los PFOS es uno de los grupos de contaminantes orgánicos persistentes restringido bajo el Convenio de Estocolmo, un tratado mundial para proteger la salud humana y el medio ambiente. Ciertos usos de los PFOS están prohibidos en Europa y en Canadá.

Clorobencenos


Usos: son sustancias químicas persistentes y bioacumulativas que se utilizan como disolventes y biocidas, en la fabricación de tintes y como intermediarios químicos.

Efectos: Aunque los efectos de la exposición dependen del tipo de clorobenceno, frecuentemente se les relaciona con afecciones al hígado,  tiroides y sistema nervioso central.

El hexaclorobenceno (HCB), el la sustancia química más tóxica y persistente de este grupo. También actúa como disruptor hormonal.

En la UE, el pentaclorobenceno y HCB son clasificados como "sustancias peligrosas prioritarias” en virtud de la normativa que obliga a tomar medidas de cara a eliminar la contaminación en aguas superficiales en Europa.

También son  “contaminantes orgánicos persistentes" regulados por el Convenio de Estocolmo, con lo que deben estar prohibidos o programada su eliminación.

Disolventes clorados


Usos: Los disolventes clorados tales como el  tricloroetanol (TCE), se utilizan en fabricación textil para disolver otras sustancias durante la fabricación y el lavado de tejidos.

El TCE es una sustancia que agota la capa de ozono y que puede persistir en el medio ambiente. También se sabe que afectan el sistema nervioso central, el hígado y riñones. Desde 2008, la UE ha restringido severamente el uso de TCE tanto en productos como en lavado textil.

Clorofenoles


Usos: Los clorofenoles son un grupo de sustancias químicas que se usan como biocidas en una amplia gama de aplicaciones, desde pesticidas a los conservantes de madera y textiles.

El pentaclorofenol (PCP) y sus derivados son utilizados como biocidas en la industria textil.

Efectos: El PCP es altamente tóxico para los seres humanos y puede afectar a muchos órganos. También es altamente tóxico para los organismos acuáticos. La UE prohibió la producción de productos que contengan PCP en 1991 y ahora se restringe la venta y el uso de todos los productos que contienen esta sustancia.

Parafinas cloradas de cadena corta (PCCC)


Usos: se utilizan en la industria textil como retardantes de llama y para el acabado de cuero y textiles.

Efectos: Son altamente tóxicos para los organismos acuáticos, no se degradan fácilmente en el medio ambiente y tienen un alto potencial para acumularse en organismos vivos. Desde 2004, se ha restringido su uso en algunas aplicaciones en la UE.

Metales pesados: cadmio, plomo, mercurio y cromo (VI)
Usos: Los metales pesados ​​tales como cadmio, plomo y mercurio, se han utilizado en ciertos tintes y pigmentos. El cromo (VI) se usa en ciertos procesos textiles y en el curtido del cuero.

Efectos: Estos metales pueden acumularse en el cuerpo a lo largo del tiempo y son altamente tóxicos, con efectos irreversibles, incluyendo lesiones del sistema nervioso (plomo y mercurio) o los riñones (cadmio). El cadmio también está asociado a enfermedades cancerígenas.

El cromo (VI) es altamente tóxico incluso en concentraciones bajas, incluyendo a muchos organismos acuáticos.

Dentro de la UE, el cadmio, el mercurio y el plomo han sido clasificados como "sustancias peligrosas prioritarias" bajo normativa que requiere medidas para eliminar la contaminación de aguas superficiales. Los usos del cadmio, del mercurio y del plomo se han restringido en Europa por un tiempo, incluyendo ciertos usos específicos de mercurio y cadmio en textiles.

sábado, 20 de septiembre de 2014

                           CHARLES DARWIN

 

Charles Robert Darwin nació en Sherewsbury el 12 de febrero de 1809. Fue el segundo hijo varón de Robert Waring Darwin, médico de fama en la localidad, y de Susannah Wedgwood, hija de un célebre ceramista del Staffordshire, Josiah Wedgwood, promotor de la construcción de un canal para unir la región con las costas y miembro de la Royal Society. Su abuelo paterno, Erasmus Darwin, fue también un conocido médico e importante naturalista, autor de un extenso poema en pareados heroicos que presentaba una alegoría del sistema linneano de clasificación sexual de las plantas, el cual fue un éxito literario del momento; por lo demás, sus teorías acerca de la herencia de los caracteres adquiridos estaban destinadas a caer en descrédito por obra, precisamente, de su nieto. Además de su hermano, cinco años mayor que él, Charles tuvo tres hermanas también mayores y una hermana menor. Tras la muerte de su madre en 1817, su educación transcurrió en una escuela local y en su vejez recordó su experiencia allí como lo peor que pudo sucederle a su desarrollo intelectual. Ya desde la infancia dio muestras de un gusto por la historia natural que él consideró innato y, en especial, de una gran afición por coleccionar cosas (conchas, sellos, monedas, minerales) el tipo de pasión «que le lleva a uno a convertirse en un naturalista sistemático, en un experto, o en un avaro».
En octubre de 1825 Darwin ingresó en la Universidad de Edimburgo para estudiar medicina por decisión de su padre, al que siempre recordó con cariño y admiración (y con un respeto no exento de connotaciones psicoanalíticas); la hipocondría de su edad adulta combinó la desconfianza en los médicos con la fe ilimitada en el instinto y los métodos de tratamiento paternos. Sin embargo Darwin no consiguió interesarse por la carrera; a la repugnancia por las operaciones quirúrgicas y a la incapacidad del profesorado para captar su atención, vino a sumarse el creciente convencimiento de que la herencia de su padre le iba a permitir una confortable subsistencia sin necesidad de ejercer una profesión como la de médico. De modo que, al cabo de dos cursos, su padre, dispuesto a impedir que se convirtiera en un ocioso hijo de familia, le propuso una carrera eclesiástica. Tras resolver los propios escrúpulos acerca de su fe, Darwin aceptó con gusto la idea de llegar a ser un clérigo rural y, a principios de 1828, después de haber refrescado su formación clásica, ingresó en el Christ's College de Cambridge.
Una nueva vida
Pero en Cambridge, como antes en Edimburgo y en la escuela, Darwin perdió el tiempo por lo que al estudio se refiere, a menudo descuidado para dar satisfacción a su pasión por la caza y por montar a caballo, actividades que ocasionalmente culminaban en cenas con amigos de las que Darwin conservó un recuerdo -posiblemente exagerado- como de auténticas francachelas. Con todo, su indolencia quedó temperada por la adquisición de sendos gustos por la pintura y la música, de los que él mismo se sorprendió más tarde, dada su absoluta carencia de oído musical y su incapacidad para el dibujo (un «mal irremediable», junto con su desconocimiento práctico de la disección, que representó una desventaja para sus trabajos posteriores).
Más que de los estudios académicos que se vio obligado a cursar, Darwin extrajo provecho en Cambridge de su asistencia voluntaria a las clases del botánico y entomólogo reverendo John Henslow, cuya amistad le reportó «un beneficio inestimable» y que tuvo una intervención directa en dos acontecimientos que determinaron su futuro: por una parte, al término de sus estudios en abril de 1831, Henslow le convenció de que se interesase por la geología, materia por la que las clases recibidas en Edimburgo le habían hecho concebir verdadera aversión, y le presentó a Adam Sedgwick, fundador del sistema cambriano, quien inició precisamente sus estudios sobre el mismo en una expedición al norte de Gales realizada en abril de ese mismo año en compañía de Darwin (treinta años más tarde, Henslow se vería obligado a defender al discípulo común ante las violentas críticas dirigidas por Sedgwick a las ideas evolucionistas); por otra parte, lo que es aún más importante, fue Henslow quien le proporcionó a Darwin la oportunidad de embarcarse como naturalista con el capitán Robert Fitzroy y acompañarle en el viaje que éste se proponía realizar a bordo del Beagle alrededor del mundo.

En un principio su padre se opuso al proyecto, manifestando que sólo cambiaría de opinión si «alguien con sentido común» era capaz de considerar aconsejable el viaje. Ese alguien fue su tío -y futuro suegro- Josiah Wedgwood, quien intercedió en favor de que su joven sobrino cumpliera el objetivo de viajar que Darwin se había fijado ya meses antes, cuando la lectura de Humboldt suscitó en él un deseo inmediato de visitar Tenerife y empezó a aprender castellano y a informarse acerca de los precios del pasaje. El 27 de diciembre de 1831 el Beagle zarpó de Davenport con Darwin a bordo y dispuesto a comenzar la que él llamó su «segunda vida», tras dos meses de desalentadora espera en Plymouth, mientras la nave era reparada de los desperfectos ocasionados en su viaje anterior, y después de que la galerna frustrara dos intentos de partida. Durante ese tiempo, Darwin experimentó «palpitaciones y dolores en el corazón» de origen más que probablemente nervioso, como quizá también lo habrían de ser más tarde sus frecuentes postraciones. Sin saberlo, Darwin había corrido el riesgo de ser rechazado por Fitzroy, ya que éste, convencido seguidor de las teorías fisiognómicas del sacerdote suizo Johann Caspar Lavater estimó en un principio que la nariz del naturalista no revelaba energía y determinación suficientes para la empresa.
El viaje del Beagle
El objetivo de la expedición dirigida por Fitzroy era el de completar el estudio topográfico de los territorios de la Patagonia y la Tierra del Fuego, el trazado de las costas de Chile, Perú y algunas islas del Pacífico y la realización de una cadena de medidas cronométricas alrededor del mundo. El periplo, de casi cinco años de duración, llevó a Darwin a lo largo de las costas de América del Sur, para regresar luego durante el último año visitando las islas Galápagos, Tahití, Nueva Zelanda, Australia, Mauricio y Sudáfrica. Durante ese período su talante experimentó una profunda transformación. La antigua pasión por la caza sobrevivió los dos primeros años con toda su fuerza y fue él mismo quien se encargó de disparar sobre los pájaros y animales que pasaron a engrosar sus colecciones; poco a poco, sin embargo, esta tarea fue quedando encomendada a su criado a medida que su atención resultaba cada vez más absorbida por los aspectos científicos de su actividad.
El estudio de la geología fue, en un principio, el factor que más contribuyó a convertir el viaje en la verdadera formación de Darwin como investigador, ya que con él entró inexcusablemente en juego la necesidad de razonar. Darwin se llevó consigo el primer volumen de los Principles of Geology de Charles Lyell, autor de la teoría llamada de las causas actuales y que habría de ser su colaborador en la exposición del evolucionismo; desde el reconocimiento de los primeros terrenos geológicos que visitó (la isla de São Tiago, en Cabo Verde), Darwin quedó convencido de la superioridad del enfoque preconizado por Lyell. En Sao Tiago tuvo por vez primera la idea de que las rocas blancas que observaba habían sido producidas por la lava derretida de antiguas erupciones volcánicas, la cual, al deslizarse hasta el fondo del mar, habría arrastrado conchas y corales triturados comunicándoles consistencia rocosa. Hacia el final del viaje, Darwin tuvo noticia de que Sedgwick había expresado a su padre la opinión de que el joven se convertiría en un científico importante; el acertado pronóstico era el resultado de la lectura por Henslow, ante la Philosophical Society de Cambridge, de algunas de las cartas remitidas por Darwin.
La teoría sobre la formación de los arrecifes de coral por el crecimiento de éste en los bordes y en la cima de islas que se iban hundiendo lentamente, fue el primero en ver la luz (1842) de entre los logros científicos obtenidos por Darwin durante el viaje. Junto a éste y al establecimiento de la estructura geológica de algunas islas como Santa Elena, está el descubrimiento de la existencia de una cierta semejanza entre la fauna y la flora de las islas Galápagos con las de América del Sur, así como de diferencias entre los ejemplares de un mismo animal o planta recogidos en las distintas islas, lo que le hizo sospechar que la teoría de la estabilidad de las especies podría ser puesta en entredicho. Fue la elaboración teórica de esas observaciones la que, años después, resultó en su enunciado de las tesis evolutivas.
Darwin regresó a Inglaterra el 2 de octubre de 1836; el cambio experimentado en esos años debió de ser tan notable que su padre, «el más agudo observador que se haya visto de natural escéptico y que estaba lejos de creer en la frenología», al volverlo a ver dictaminó que la forma de su cabeza había cambiado por completo. También su salud se había alterado; hacia el final del viaje se mareaba con más facilidad que en sus comienzos, y en el otoño de 1834 había estado enfermo durante un mes. Se ha especulado con la posibilidad de que en marzo de 1835 contrajera una infección latente de la llamada enfermedad de Chagas como consecuencia de la picadura de un insecto. De todos modos desde su llegada hasta comienzos de 1839 Darwin vivió los meses más activos de su vida, pese a las pérdidas de tiempo que le supuso el sentirse ocasionalmente indispuesto. Trabajó en la redacción de su diario del viaje (publicado en 1839) y en la elaboración de dos textos que presentaran sus observaciones geológicas y zoológicas. Instalado en Londres desde marzo de 1837, se dedicó a «hacer un poco de sociedad», actuando como secretario honorario de la Geological Society y tomando contacto con Lyell. En julio de ese año empezó a escribir su primer cuaderno de notas sobre sus nuevos puntos de vista acerca de la «transmutación de las especies», que se le fueron imponiendo al reflexionar acerca de sus propias observaciones sobre la clasificación, las afinidades y los instintos de los animales, y también como consecuencia de un estudio exhaustivo de cuantas informaciones pudo recoger relativas a las transformaciones experimentadas por especies de plantas y animales domésticos debido a la intervención de criadores y horticultores.
Sus investigaciones, realizadas sobre la base de «auténticos principios baconianos», pronto le convencieron de que la selección era la clave del éxito humano en la obtención de mejoras útiles en las razas de plantas y animales. La posibilidad de que esa misma selección actuara sobre los organismos que vivían en un estado natural se le hizo patente cuando en octubre de 1838 leyó «como pasatiempo» el ensayo de Malthus sobre la población, dispuesto como se hallaba, por sus prolongadas observaciones sobre los hábitos de animales y plantas, a percibir la presencia universal de la lucha por la existencia, se le ocurrió al instante que, en esas circunstancias, las variaciones favorables tenderían a conservarse, mientras que las desfavorables desaparecerían, con el resultado de la formación de nuevas especies. Darwin estimó que, «al fin, había conseguido una teoría con la que trabajar»; sin embargo, preocupado por evitar los prejuicios, decidió abstenerse por un tiempo de «escribir siquiera el más sucinto esbozo de la misma». En junio de 1842 se permitió el placer privado de un resumen muy breve -35 páginas escritas a lápiz-, que amplió hasta 230 páginas en el verano del año 1844.
Por entonces, Darwin había contraído matrimonio el 29 de enero de 1839 con su prima Emma Wedgwood. Residieron en Londres hasta septiembre de 1842, cuando la familia se instaló en Down, en el condado de Kent, buscando un género de vida que se adecuase mejor a los frecuentes períodos de enfermedad que, a partir del regreso de su viaje, afligieron constantemente a Darwin. Por lo demás, los años de Londres fueron, por lo que a vida social se refiere, un preludio del retiro casi total en el que vivió en Down hasta el final de sus días. El 27 de diciembre de 1839 nació el primer hijo del matrimonio y Darwin inició con él una serie de observaciones, que se prolongaron a lo largo de los años, sobre la expresión de las emociones en el hombre y en los animales. Tuvo diez hijos, seis varones y cuatro mujeres, nacidos entre 1839 y 1856, de los que dos niñas y un niño murieron en la infancia.
La teoría de la evolución
Durante los primeros años de su estancia en Down, Darwin completó la redacción de sus trabajos sobre temas geológicos y se ocupó también de una nueva edición de su diario de viaje, que en un principio había aparecido formando parte de la obra publicada por Fitzroy sobre sus expediciones; en las notas autobiográficas que redactó en 1876 (reveladoramente tituladas como Recollections of the Development of my Mind and Character), Darwin reconoció que «el éxito de este mi primer retoño literario siempre enardece mi vanidad más que el de cualquier otro de mis libros». De 1846 a 1854 Darwin estuvo ocupado en la redacción de sus monografías sobre los cirrípodos, por los que se había interesado durante su estancia en las costas de Chile al hallar ejemplares de un tipo que planteaba problemas de clasificación. Esos años de trabajo sirvieron para convertirlo en un verdadero naturalista según las exigencias de su época, añadiendo al aprendizaje práctico adquirido durante el viaje la formación teórica necesaria para abordar el problema de las relaciones entre la historia natural y la taxonomía. Además, sus estudios sobre los percebes le reportaron una sólida reputación entre los especialistas, siendo premiados en noviembre de 1853 por la Royal Society, de la que Darwin era miembro desde 1839.
A comienzos de 1856 Lyell aconsejó a Darwin que trabajara en el completo desarrollo de sus ideas acerca de la evolución de las especies. Darwin emprendió entonces la redacción de una obra que, aun estando concebida a una escala tres o cuatro veces superior de la que luego había de ser la del texto efectivamente publicado, representaba, en su opinión, un mero resumen del material recogido al respecto. Pero, cuando se hallaba hacia la mitad del trabajo, sus planes se fueron al traste por un suceso que precipitó los acontecimientos: en el verano de 1858 recibió un manuscrito que contenía una breve pero explícita exposición de una teoría de la evolución por selección natural, que coincidía exactamente con sus propios puntos de vista. El texto, remitido desde la isla de Ternate, en las Molucas, era obra de Alfred Russell Wallace, un naturalista que desde 1854 se hallaba en el archipiélago malayo y que ya en 1856 había enviado a Darwin un artículo sobre la aparición de especies nuevas con el que éste se sintió ampliamente identificado. En su nuevo trabajo, Wallace hablaba como Darwin, de «lucha por la existencia», una idea que, curiosamente, también le había venido inspirada por la lectura de Malthus. Darwin puso a Lyell en antecedentes del asunto y le comunicó sus vacilaciones acerca de cómo proceder respecto de la publicación de sus propias teorías, llegando a manifestar su intención de destruir sus propios escritos antes que aparecer como un usurpador de los derechos de Wallace a la prioridad. El incidente se saldó de manera salomónica merced a la intervención de Lyell y del botánico Joseph Dalton Hooker, futuro director de los Kew Gardens creados por su padre y uno de los principales defensores de las teorías evolucionistas de Darwin, con quien le unió una estrecha amistad desde 1843. Siguiendo el consejo de ambos, Darwin resumió su manuscrito, que fue presentado por Lyell y Hooker ante la Linnean Society el 1 de julio de 1858, junto con el trabajo de Wallace y con un extracto de una carta remitida por Darwin el 5 de septiembre de 1857 al botánico estadounidense Asa Gray, en el que constaba un esbozo de su teoría. Wallace no puso nunca en cuestión la corrección del procedimiento; más tarde, en 1887, manifestó su satisfacción por la manera en que todo se había desarrollado, aduciendo que él no poseía «el amor por el trabajo, el experimento y el detalle tan preeminente en Darwin, sin el cual cualquier cosa que yo hubiera podido escribir no habría convencido nunca a nadie».
Tras el episodio, Darwin se vio obligado a dejar de lado sus vacilaciones por lo que a la publicidad de sus ideas se refería y abordó la tarea de reducir la escala de la obra que tenía entre manos para enviarla cuanto antes a la imprenta; en «trece meses y diez días de duro trabajo» quedó por fin redactado el libro On the Origin of Species by means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, del que los primeros 1.250 ejemplares se vendieron el mismo día de su aparición, el 24 de noviembre de 1859. Las implicaciones teológicas de la obra, que atribuía a la selección natural facultades hasta entonces reservadas a la divinidad, fueron causa de que inmediatamente empezara a formarse una enconada oposición, capitaneada por el paleontólogo Richard Owen, quien veinte años antes había acogido con entusiasmo las colecciones de fósiles traídas por Darwin de su viaje. En una memorable sesión de la British Association for the Advancement of Science que tuvo lugar en Oxford el 30 de junio de 1860, el obispo Samuel Wilberforce en calidad de portavoz del partido de Owen ridiculizó con brillante elocuencia las tesis evolucionistas, provocando una contundente réplica por parte de Thomas Henry Huxley, zoólogo, que fue el principal defensor ante la oposición religiosa de las tesis de Darwin, ganándose el sobrenombre de su bulldog. A la pregunta de Wilberforce sobre si a Huxley le hubiera sido indiferente saber que su abuelo había sido un mono, la respuesta inmediata fue, según el testimonio de Lyell: «Estaría en la misma situación que su señoría».
Darwin se mantuvo apartado de la intervención directa en la controversia pública hasta 1871, cuando se publicó su obra The Descent of Man and Selection in Relation to Sex, donde expuso sus argumentos en favor de la tesis de que el hombre había aparecido sobre la Tierra por medios exclusivamente naturales. Tres años antes había aparecido su estudio sobre la variación en animales y plantas por los efectos de la selección artificial, en el que trató de formular una teoría sobre el origen de la vida en general («pangénesis»), que resultó ser la más pobre de sus aportaciones a la biología. En 1872, con The Expression of the Emotions in Man and Animals, obra seminal de lo que luego sería el estudio moderno del comportamiento, Darwin puso fin a sus preocupaciones por los problemas teóricos y dedicó los últimos diez años de su vida a diversas investigaciones en el campo de la botánica.
A finales de 1881 comenzó a padecer graves problemas cardíacos y falleció a consecuencia de un ataque al corazón el 19 de abril de 1882.

                          ALEXANDER FLEMING


 Alexander Fleming nació el 6 de agosto de 1881 en Lochfield, Gran Bretaña, en el seno de una familia campesina afincada en la vega escocesa. Fue el tercero de los cuatro hijos habidos en segundas nupcias por Hugh Fleming, el cual falleció cuando Alexander tenía siete años, dejando a su viuda al cuidado de la hacienda familiar con la ayuda del mayor de sus hijastros. Fleming recibió, hasta 1894, una educación bastante rudimentaria, obtenida con dificultad, de la que sin embargo parece haber extraído el gusto por la observación detallada y el talante sencillo que luego habrían de caracterizarle. Cumplidos los trece años, se trasladó a vivir a Londres con un hermanastro que ejercía allí como médico. Completó su educación con dos cursos realizados en el Polytechnic Institute de Regent Street, empleándose luego en las oficinas de una compañía naviera. En 1900 se alistó en el London Scottish Regiment con la intención de participar en la Guerra de los Boers, pero ésta terminó antes de que su unidad llegara a embarcarse. Sin embargo, su gusto por la vida militar le llevó a permanecer agregado a su regimiento, interviniendo en la Primera Guerra Mundial como oficial del Royal Army Medical Corps en Francia.

 A los veinte años, la herencia de un pequeño legado le llevó a estudiar medicina. Obtuvo una beca para el St. Mary's Hospital Medical School de Paddington, institución con la que, en 1901, inició una relación que había de durar toda su vida. En 1906 entró a formar parte del equipo del bacteriólogo sir Almroth Wright, con quien estuvo asociado durante cuarenta años. En 1908 se licenció, obteniendo la medalla de oro de la Universidad de Londres. Nombrado profesor de bacteriología, en 1928 pasó a ser catedrático, retirándose como emérito en 1948, aunque ocupó hasta 1954 la dirección del Wright-Fleming Institute of Microbiology, fundado en su honor y en el de su antiguo maestro y colega.

La carrera profesional de Fleming estuvo dedicada a la investigación de las defensas del cuerpo humano contra las infecciones bacterianas. Su nombre está asociado a dos descubrimientos importantes: la lisozima y la penicilina. El segundo es, con mucho, el más famoso y también el más importante desde un punto de vista práctico: ambos están, con todo, relacionados entre sí, ya que el primero de ellos tuvo la virtud de centrar su atención en las substancias antibacterianas que pudieran tener alguna aplicación terapéutica. Fleming descubrió la lisozima en 1922, cuando puso de manifiesto que la secreción nasal poseía la facultad de disolver determinados tipos de bacterias. Probó después que dicha facultad dependía de una enzima activa, la lisozima, presente en muchos de los tejidos corporales, aunque de actividad restringida por lo que se refleja a los organismos patógenos causantes de las enfermedades. Pese a esta limitación, el hallazgo se reveló altamente interesante, puesto que demostraba la posibilidad de que existieran sustancias que, siendo inofensivas para las células del organismo, resultasen letales para las bacterias. A raíz de las investigaciones emprendidas por Paul Ehrlich treinta años antes, la medicina andaba ya tras un resultado de este tipo, aunque los éxitos obtenidos habían sido muy limitados.
El descubrimiento de la penicilina, una de las más importantes adquisiciones de la terapéutica moderna, tuvo su origen en una observación fortuita. En septiembre de 1928, Fleming, durante un estudio sobre las mutaciones de determinadas colonias de estafilococos, comprobó que uno de los cultivos había sido accidentalmente contaminado por un microorganismo procedente del aire exterior, un hongo posteriormente identificado como el Penicillium notatum. Su meticulosidad le llevó a observar el comportamiento del cultivo, comprobando que alrededor de la zona inicial de contaminación, los estafilococos se habían hecho transparentes, fenómeno que Fleming interpretó correctamente como efecto de una substancia antibacteriana segregada por el hongo. Una vez aislado éste, Fleming supo sacar partido de los limitados recursos a su disposición para poner de manifiesto las propiedades de dicha substancia. Así, comprobó que un caldo de cultivo puro del hongo adquiría, en pocos días, un considerable nivel de actividad antibacteriana. Realizó diversas experiencias destinadas a establecer el grado de susceptibilidad al caldo de una amplia gama de bacterias patógenas, observando que muchas de ellas resultaban rápidamente destruidas; inyectando el cultivo en conejos y ratones, demostró que era inocuo para los leucocitos, lo que constituía un índice fiable de que debía resultar inofensivo para las células animales.
Ocho meses después de sus primeras observaciones, Fleming publicó los resultados obtenidos en una memoria que hoy se considera un clásico en la materia, pero que por entonces no tuvo demasiada resonancia. Pese a que Fleming comprendió desde un principio la importancia del fenómeno de antibiosis que había descubierto (incluso muy diluida, la substancia poseía un poder antibacteriano muy superior al de antisépticos tan potentes como el ácido fénico), la penicilina tardó todavía unos quince años en convertirse en el agente terapéutico de uso universal que había de llegar a ser. Las razones para este aplazamiento son diversas, pero uno de los factores más importantes que lo determinaron fue la inestabilidad de la penicilina, que convertía su purificación en un proceso excesivamente difícil para las técnicas químicas disponibles. La solución del problema llegó con las investigaciones desarrolladas en Oxford por el equipo que dirigieron el patólogo australiano H. W. Florey y el químico alemán E. B. Chain, refugiado en Inglaterra, quienes, en 1939, obtuvieron una importante subvención para el estudio sistemático de las substancias antimicrobianas segregadas por los microorganismos. En 1941 se obtuvieron los primeros resultados satisfactorios con pacientes humanos. La situación de guerra determinó que se destinaran al desarrollo del producto recursos lo suficientemente importantes como para que, ya en 1944, todos los heridos graves de la batalla de Normandía pudiesen ser tratados con penicilina.
Con un cierto retraso, la fama alcanzó por fin a Fleming, quien fue elegido miembro de la Royal Society en 1942, recibió el título de sir dos años más tarde y, por fin, en 1945, compartió con Florey y Chain el premio Nobel. Falleció en Londres el 11 de marzo de 1955.


 


                            LUIS PASTEUR

 

 

(Dôle, Francia, 1822-St.-Cloud, id., 1895) Químico y bacteriólogo francés. Formado en el Liceo de Besançon y en la Escuela Normal Superior de París, en la que había ingresado en 1843, Louis Pasteur se doctoró en ciencias por esta última en 1847.
Al año siguiente, sus trabajos de química y cristalografía le permitieron obtener unos resultados espectaculares en relación con el problema de la hemiedría de los cristales de tartratos, en los que demostró que dicha hemiedría está en relación directa con el sentido de la desviación que sufre la luz polarizada al atravesar dichas soluciones.


Profesor de química en la Universidad de Estrasburgo en 1847-1853, Louis Pasteur fue decano de la Universidad de Lille en 1854; en esta época estudió los problemas de la irregularidad de la fermentación alcohólica. En 1857 desempeñó el cargo de director de estudios científicos de la Escuela Normal de París, cuyo laboratorio dirigió a partir de 1867. Desde su creación en 1888 y hasta su muerte fue director del Instituto que lleva su nombre.
Las contribuciones de Pasteur a la ciencia fueron numerosas, y se iniciaron con el descubrimiento de la isomería óptica (1848) mediante la cristalización del ácido racémico, del cual obtuvo cristales de dos formas diferentes, en lo que se considera el trabajo que dio origen a la estereoquímica.
Estudió también los procesos de fermentación, tanto alcohólica como butírica y láctica, y demostró que se deben a la presencia de microorganismos y que la eliminación de éstos anula el fenómeno (pasteurización). Demostró el llamado efecto Pasteur, según el cual las levaduras tienen la capacidad de reproducirse en ausencia de oxígeno. Postuló la existencia de los gérmenes y logró demostrarla, con lo cual rebatió de manera definitiva la antigua teoría de la generación espontánea.
En 1865 Pasteur descubrió los mecanismos de transmisión de la pebrina, una enfermedad que afecta a los gusanos de seda y amenazaba con hundir la industria francesa. Estudió en profundidad el problema y logró determinar que la afección estaba directamente relacionada con la presencia de unos corpúsculos –descritos ya por el italiano Cornaglia– que aparecían en la puesta efectuada por las hembras contaminadas. Como consecuencia de sus trabajos, enunció la llamada teoría germinal de las enfermedades, según la cual éstas se deben a la penetración en el cuerpo humano de microorganismos patógenos.

                   
ALBERT EINSTEIN

Albert Einstein sigue siendo una figura mítica de nuestro tiempo; más, incluso, de lo que llegó a serlo en vida, si se tiene en cuenta que su imagen, en condición de póster y exhibiendo un insólito gesto de burla, se ha visto elevada a la dignidad de icono doméstico, junto a los ídolos de la canción y los astros de Hollywood.
Sin embargo, no son su genio científico ni su talla humana los que mejor lo explican como mito, sino, quizás, el cúmulo de paradojas que encierra su propia biografía, acentuadas con la perspectiva histórica. Al Einstein campeón del pacifismo se le recuerda aún como al «padre de la bomba»; y todavía es corriente que se le atribuya la demostración del principio de que «todo es relativo» a él, que luchó encarnizadamente contra la posibilidad de que conocer la realidad significara jugar con ella a la gallina ciega.
Albert Einstein nació en la ciudad bávara de Ulm el 14 de marzo de 1879. Fue el hijo primogénito de Hermann Einstein y de Pauline Koch, judíos ambos, cuyas familias procedían de Suabia. Al siguiente año se trasladaron a Munich, en donde el padre se estableció, junto con su hermano Jakob, como comerciante en las novedades electrotécnicas de la época.
El pequeño Albert fue un niño quieto y ensimismado, que tuvo un desarrollo intelectual lento. El propio Einstein atribuyó a esa lentitud el hecho de haber sido la única persona que elaborase una teoría como la de la relatividad: «un adulto normal no se inquieta por los problemas que plantean el espacio y el tiempo, pues considera que todo lo que hay que saber al respecto lo conoce ya desde su primera infancia. Yo, por el contrario, he tenido un desarrollo tan lento que no he empezado a plantearme preguntas sobre el espacio y el tiempo hasta que he sido mayor».


En 1894, las dificultades económicas hicieron que la familia (aumentada desde 1881, por el nacimiento de una hija, Maya) se trasladara a Milán; Einstein permaneció en Munich para terminar sus estudios secundarios, reuniéndose con sus padres al año siguiente. En el otoño de 1896, inició sus estudios superiores en la Eidgenossische Technische Hochschule de Zurich, en donde fue alumno del matemático Hermann Minkowski, quien posteriormente generalizó el formalismo cuatridimensional introducido por las teorías de su antiguo alumno. El 23 de junio de 1902, empezó a prestar sus servicios en la Oficina Confederal de la Propiedad Intelectual de Berna, donde trabajó hasta 1909. En 1903, contrajo matrimonio con Mileva Maric, antigua compañera de estudios en Zurich, con quien tuvo dos hijos: Hans Albert y Eduard, nacidos respectivamente en 1904 y en 1910. En 1919 se divorciaron, y Einstein se casó de nuevo con su prima Elsa.
Durante 1905, publicó cinco trabajos en los Annalen der Physik: el primero de ellos le valió el grado de doctor por la Universidad de Zurich, y los cuatro restantes acabaron por imponer un cambio radical en la imagen que la ciencia ofrece del universo. De éstos, el primero proporcionaba una explicación teórica, en términos estadísticos, del movimiento browniano, y el segundo daba una interpretación del efecto fotoeléctrico basada en la hipótesis de que la luz está integrada por cuantos individuales, más tarde denominados fotones; los dos trabajos restantes sentaban las bases de la teoría restringida de la relatividad, estableciendo la equivalencia entre la energía E de una cierta cantidad de materia y su masa m, en términos de la famosa ecuación E = mc², donde c es la velocidad de la luz, que se supone constante.


Einstein con Elsa, su segunda esposa
El esfuerzo de Einstein lo situó inmediatamente entre los más eminentes de los físicos europeos, pero el reconocimiento público del verdadero alcance de sus teorías tardó en llegar; el Premio Nobel de Física, que se le concedió en 1921 lo fue exclusivamente «por sus trabajos sobre el movimiento browniano y su interpretación del efecto fotoeléctrico». En 1909, inició su carrera de docente universitario en Zurich, pasando luego a Praga y regresando de nuevo a Zurich en 1912 para ser profesor del Politécnico, en donde había realizado sus estudios. En 1914 pasó a Berlín como miembro de la Academia de Ciencias prusiana. El estallido de la Primera Guerra Mundial le forzó a separarse de su familia, por entonces de vacaciones en Suiza y que ya no volvió a reunirse con él.
Contra el sentir generalizado de la comunidad académica berlinesa, Einstein se manifestó por entonces abiertamente antibelicista, influido en sus actitudes por las doctrinas pacifistas de Romain Rolland. En el plano científico, su actividad se centró, entre 1914 y 1916, en el perfeccionamiento de la teoría general de la relatividad, basada en el postulado de que la gravedad no es una fuerza sino un campo creado por la presencia de una masa en el continuum espacio-tiempo. La confirmación de sus previsiones llegó en 1919, al fotografiarse el eclipse solar del 29 de mayo; The Times lo presentó como el nuevo Newton y su fama internacional creció, forzándole a multiplicar sus conferencias de divulgación por todo el mundo y popularizando su imagen de viajero de la tercera clase de ferrocarril, con un estuche de violín bajo el brazo.
Durante la siguiente década, Einstein concentró sus esfuerzos en hallar una relación matemática entre el electromagnetismo y la atracción gravitatoria, empeñado en avanzar hacia el que, para él, debía ser el objetivo último de la física: descubrir las leyes comunes que, supuestamente, habían de regir el comportamiento de todos los objetos del universo, desde las partículas subatómicas hasta los cuerpos estelares. Tal investigación, que ocupó el resto de su vida, resultó infructuosa y acabó por acarrearle el extrañamiento respecto del resto de la comunidad científica.


Einstein tocando el violín, una de sus aficiones favoritas
A partir de 1933, con el acceso de Hitler al poder, su soledad se vio agravada por la necesidad de renunciar a la ciudadanía alemana y trasladarse a Estados Unidos, en donde pasó los últimos veinticinco años de su vida en el Instituto de Estudios Superiores de Princeton, ciudad en la que murió el 18 de abril de 1955.
Einstein dijo una vez que la política poseía un valor pasajero, mientras que una ecuación valía para toda la eternidad. En los últimos años de su vida, la amargura por no hallar la fórmula que revelase el secreto de la unidad del mundo hubo de acentuarse por la necesidad en que se sintió de intervenir dramáticamente en la esfera de lo político. En 1939, a instancias de los físicos Leo Szilard y Paul Wigner, y convencido de la posibilidad de que los alemanes estuvieran en condiciones de fabricar una bomba atómica, se dirigió al presidente Roosevelt instándole a emprender un programa de investigación sobre la energía atómica.
Luego de las explosiones de Hiroshima y Nagasaki, se unió a los científicos que buscaban la manera de impedir el uso futuro de la bomba y propuso la formación de un gobierno mundial a partir del embrión constituido por las Naciones Unidas. Pero sus propuestas en pro de que la humanidad evitara las amenazas de destrucción individual y colectiva, formuladas en nombre de una singular amalgama de ciencia, religión y socialismo, recibieron de los políticos un rechazo comparable a las críticas respetuosas que suscitaron entre los científicos sus sucesivas versiones de la idea de un campo unificado.

                              GREGOR MENDEL

 

(Johann Gregor Mendel; Heizendorf, hoy Hyncice, actual República Checa, 1822 - Brünn, hoy Brno, id., 1884) Biólogo austriaco. Su padre era veterano de las guerras napoleónicas y su madre, la hija de un jardinero. Tras una infancia marcada por la pobreza y las penalidades, en 1843 Johann Gregor Mendel ingresó en el monasterio agustino de Königskloster, cercano a Brünn, donde tomó el nombre de Gregor y fue ordenado sacerdote en 1847. Residió en la abadía de Santo Tomás (Brünn) y, para poder seguir la carrera docente, fue enviado a Viena, donde se doctoró en matemáticas y ciencias (1851).
En 1854 Mendel se convirtió en profesor suplente de la Real Escuela de Brünn, y en 1868 fue nombrado abad del monasterio, a raíz de lo cual abandonó de forma definitiva la investigación científica y se dedicó en exclusiva a las tareas propias de su función.

 

El núcleo de sus trabajos –que comenzó en el año 1856 a partir de experimentos de cruzamientos con guisantes efectuados en el jardín del monasterio– le permitió descubrir las tres leyes de la herencia o leyes de Mendel, gracias a las cuales es posible describir los mecanismos de la herencia y que fueron explicadas con posterioridad por el padre de la genética experimental moderna, el biólogo estadounidense Thomas Hunt Morgan (1866-1945).
En el siglo XVIII se había desarrollado ya una serie de importantes estudios acerca de hibridación vegetal, entre los que destacaron los llevados a cabo por Kölreuter, W. Herbert, C. C. Sprengel y A. Knight, y ya en el siglo XIX, los de Gärtner y Sageret (1825). La culminación de todos estos trabajos corrió a cargo, por un lado, de Ch. Naudin (1815-1899) y, por el otro, de Gregor Mendel, quien llegó más lejos que Naudin.
Las tres leyes descubiertas por Mendel se enuncian como sigue: según la primera, cuando se cruzan dos variedades puras de una misma especie, los descendientes son todos iguales y pueden parecerse a uno u otro progenitor o a ninguno de ellos; la segunda afirma que, al cruzar entre sí los híbridos de la segunda generación, los descendientes se dividen en cuatro partes, de las cuales una se parece a su abuela, otra a su abuelo y las dos restantes a sus progenitores; por último, la tercera ley concluye que, en el caso de que las dos variedades de partida difieran entre sí en dos o más caracteres, cada uno de ellos se transmite de acuerdo con la primera ley con independencia de los demás.

avances tecnologicos y cientificos en mexico.

 


 

Baterías más ecológicas: Finalmente se está comercializando una batería recargable metal-aire que reemplaza el diesel y la combinación plomo-ácido. Tienen más capacidad que las baterías de litio y también son más baratas.
Pantallas de celulares de zafiro: Este material es muchísimo más barato que el cristal de los teléfonos de hoy en día, es menos sensible y no se raya.
Smartphones y tablets con hologramas: HP ha desarrollado un tipo de visualización de hologramas sin necesidad de lentes o partes móviles.



 Dispositivos cerebrales inalámbricos: Estos nuevos dispositivos cerebrales inalámbricos permitirán a las personas con problemas de movilidad muscular poder controlar su silla de ruedas o un ordenador con el pensamiento.



 Educación por Internet: Ya hace unos años un tímido entorno virtual para estudiantes, donde los profesores colocaban materiales y fechas de exámenes, hacía más fácil la tarea de estudiar. Hoy en día, universidades de primer nivel como Stanford o Harvard ofrecen hacer cursos y carreras de forma virtual, con conferencias por streaming, materiales escritos y audiovisuales y tutorías personalizadas según el idioma, la capacidad de aprendizaje e incluso la cultura.



 Nueva terapia contra el cáncer: Este tratamiento utiliza la terapia génica para inducir una respuesta inmune al cáncer. Se utilizan células del propio cuerpo para hacer copias adicionales de la hormona que regula esa respuesta contra el cáncer. Pero esta molécula es muy peligrosa, por lo que el paso más importante era controlar sus niveles, lo que se ha conseguido mediante una pastilla.

                                    mozaico fluido 


El modelo mosaico fluido consiste en una bicapa lipídica y diversos tipos de proteínas. La estructura básica se mantiene unida mediante uniones no covalentes. El "mosaico fluido" fue propuesto por Singer y Nicholson en 1972 y propone lo siguiente:

v Considera que la membrana es como un mosaico fluido en el que la bicapa lipídica es la red cemetante y las proteínas embebidas en ella, interaccionando unas con otras y con los lípidos.
v Tanto las proteínas como los lípidos pueden desplazarse lateralmente.
v Los lípidos y las proteínas integrales se hallan dispuestos en mosaico.
v Las membranas son estructuras asimétricas en cuanto a la distribución fundamentalmente de los glúcidos, que sólo se encuentran en la cara externa.

El concepto anterior hace mención a que tanto los lípidos como las proteínas pueden tener considerable libertad de movimiento dentro de la bicapa. Pero dicho movimiento está limitado, ya que un lípido o una proteína que se encuentra en la mitad externa de la bicapa no puede pasar a la mitad interna.
La disposición de las proteínas se basa en su antipatía, cuyas regiones polares sobresalen de la superficie de la membrana y las regiones no polares están incluidas en el interior hidrofóbico de la misma.
La disposición molecular que se acaba de detallar podría explicar por qué determinadas enzimas y glucoproteínas antigénicas poseen sus sitios activos expuestos sobre la superficie externa de la célula.

Funciones de la membrana plasmática:

v Envuelve el
citoplasma.
v Rodea a la célula, definiendo su extensión y manteniendo las diferencias esenciales entre el contenido de la célula y su entorno.
v efectúa el
control cualitativo y cuantitativo de la entrada y salida de sustancias
v Transfieren información.

Difucion facilitada - Created with Haiku Deck, presentation software that inspires

sábado, 6 de septiembre de 2014

genoma humano


PARTES DEL MICROSCOPIO Y PARA QUE SIRVEN 


 OCULAR:  Lente situada cerca del ojo del observador. Amplía la imagen del objetivo.

    - El TUBO  Óptico se puede acercar o alejar de la preparación mediante un TORNILLO MACROMÉTRICO o de grandes movimientos que sirve para realizar un primer enfoque.
    -REVÓLVER: Contiene los sistemas de lentes objetivos. Permite, al girar, cambiar los objetivos. La esfera se sulee llamar CABEZAL Y contiene los sistemas de lentes oculares (monoculares o binoculares (2 lentes)).
    - BRAZO : Es una pieza metálica de forma curvada que puede girar; sostiene por su extremo superior al Tubo Óptico y en el inferior lleva varias piezas importantes.
    -PLATINA: Lugar donde se deposita la preparación.
    -OBJETIVO: Lente situada cerca de la preparación. Amplía la imagen de ésta.
    - PINZAS DE SUJECION.- Parte mecánica que sirve para sujetar la preparación. La mayoría de los microscopios modernos tienen las pinzas adosadas a un carro con dos tornillos, que permiten un avance longitudinal y  transversal de la preparación. 
    -CONDENSADOR: Lente que concentra los rayos luminosos sobre la preparación. El condensador de la parte de abajo también se llama FOCO y es el que dirige los rayos luminosos hacia el condensador.
    -TORNILLOS DE ENFOQUE: Macrométrico que aproxima el enfoque y micrométrico que consigue el enfoque correcto.
    - BASE. Sujeccion de todo el microscopio.

   Sobre la PLATINA se coloca la preparación que se va a observar  con un Orificio central por el que pasa la Luz procedente del Espejo. El ESPEJO con una cara plana y otra cóncava, está montado sobre un eje giratorio ubicado en la zona más inferior del brazo por debajo de la Platina.